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We present a general bifurcation in the synchronized dynamics of time-delay-coupled nonlinear oscillators.
The relative phase between the oscillators jumps from zero to � as a function of the coupling; this phase-flip
bifurcation is accompanied by a discontinuous change in the frequency of the synchronized oscillators. This
phenomenon is of broad relevance, being observed in regimes of oscillator death as well as in periodic,
quasiperiodic, and chaotic dynamics. Time-delay coupling is necessary for the phase-flip bifurcation. We
illustrate the phenomenon, and present analytical results for paradigmatic nonlinear systems. Possible applica-
tions are discussed.
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The synchronization of coupled nonlinear oscillators can
be either the in-phase state, or—as indeed in Huygens’ first
observation of the phenomenon �1�—the antiphase state.
Such phase properties of synchronized systems �2� have been
the focus of considerable recent interest �3�.

In this paper we describe a general bifurcation in nonlin-
ear oscillators when their interaction is time delayed. As the
delay is varied, at a critical value of the parameters, the rela-
tive phase between the oscillators changes abruptly from
zero to �. This bifurcation, which we call the phase flip, is
observed in the synchronization regime and is a general fea-
ture of time-delay-coupled systems. This had been observed
in the special case of relaxation oscillations, namely, when
the interaction leads to oscillator death �4�. In the present
paper, we show that this bifurcation has a broad range of
occurrence: it is observed for periodic as well as chaotic
oscillators, for identical as well as nonindentical coupled sys-
tems, and in a variety of different dynamical regimes.

This bifurcation has broad relevance due to the ubiquity
of time-delay coupling. In most natural systems signals are
transmitted with finite velocity, which makes delay coupling
appropriate in physical, biological, ecological, or social sys-
tems. Several studies have explored the manner in which
coupling induces complex phenomena �such as synchroniza-
tion, for example� in nonlinear dynamical systems, although
time-delay coupling has not so far been studied widely in
this context. The nature of the coupling makes the system
infinite dimensional and therefore less analytically tractable;
recent studies of coupled time-delay interacting systems
�4–7� have begun to address these issues. For phase oscilla-
tors with time-delay coupling the phase jump has been ob-
served, but with multiple coexisting attractors �7�. When the
coupling is instantaneous, both in-phase and antiphase states
are known to occur, as indeed are states of mixed phase �8�.
Studies have even noted a situation where there are time-
dependent transitions between them �2�.

In the synchronized regime there can, in addition to am-
plitude death �4,9�, be regions of chaotic, periodic, or quasi-
periodic dynamics. Given the wealth of dynamical behavior
that occurs in such systems, therefore, the occurrence of a
bifurcation between the in-phase attractor and the out-of-
phase attractor of different synchronized dynamics has con-
siderable importance.

We first demonstrate the phase-flip bifurcation in a pair of
diffusively coupled Rössler �10� oscillators. This is a para-
digmatic system that describe a simple mathematical model
of chemical kinetics that incorporates reaction-diffusion. For
simplicity we take both oscillators �differentiated by sub-
script 1 or 2� to be identical, but couple the variables y1 and
y2 at different times:

ẋ1,2�t� = − y1,2 − z1,2,

ẏ1,2�t�
dt

= x1,2 + ay1,2 + ��y2,1�t − �� − y1,2�t�� ,

ż1,2�t�
dt

= b + z1,2�x1,2 − c� . �1�

The uncoupled ��=0� subsystems are chaotic �10� for a=b
=0.1 and c=14; we study the coupled system as a function of
the coupling � and the time delay �.

For the case of instantaneous coupling ��=0� this system
has been studied in detail �2,11� and a variety of dynamical
phenomena are known to occur. These also obtain for finite
coupling; some preliminary results for time-delay-coupled
Rössler systems have been presented in �4�. Figure 1�a� sche-
matically depicts the different dynamical states that arise for
a range of the parameters � and � �12�. The shaded region,
marked C, corresponds to chaotic states while the white re-
gion shows the regions of regular behavior. These include a
stable fixed point FP regime �which corresponds to ampli-
tude death �4�� and periodic �P� and quasiperiodic �QP� dy-
namics.

The phase-flip bifurcation takes place across the bold line
in Fig. 1�a� in the whole range of � and for a certain range of
�. The arrows depict the direction of the transition from in-
phase to out-of-phase motion �Fig. 1�b��. The attached num-
bers label different dynamics before and after this bifurca-
tion: 1 has amplitude death �FP� both before and after the
transition, 2 is from periodic to periodic dynamics, 3 and 5
are from periodic to chaotic motion, 4 is from chaotic to
chaotic motion, and 6 is from periodic to quasiperiodic dy-
namics.

The largest few Lyapunov exponents as a function of the
time-delay parameter are shown for this system in Fig. 2
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across the different settings of the phase-flip bifurcation. Fig-
ure 2�a� is for the transition along the arrow marked 1 with
�=0.16. Since �1 is negative, the dynamics eventually goes
to a fixed point attractor �4�. Inset in Fig. 2�a� are represen-
tative trajectories at �=1.52, before the bifurcation, and at
�=1.63, after the bifurcation which can be clearly seen in
Fig. 2�b� where the relative phase is shown as a function of
�. In either case the trajectories spiral into the fixed point, but
for �=1.52, which is prior to the bifurcation, the oscillators
are in-phase, while for �=1.63 they are out of phase. Note
that eventually the coupling vanishes and the fixed point cor-
responds to that of the uncoupled systems. The largest
Lyapunov exponent for this fixed point solution, the position
of which does not change with time delay, is also shown in
Fig. 2�a� as �FP. Since this is negative in the FP region the
fixed point is stable �4,13�.

The location of the bifurcation can be easily seen in a
graph of the largest Lyapunov exponent. Note that there is a
discontinuity in the slope at �c �marked by the arrow�. The
phase difference between the oscillators, defined as ��
= ���1�t�−�2�t��� where �·� denotes the average over time and
�i�t�� tan−1�yi�t� /xi�t�� �4,14� is shown as a function of � in
Fig. 2�b�. At �c this difference abruptly changes from 0 to �:
this is the phase flip �see this bifurcation in Fig. 1�b� for
other regions of parameter space�.

Since the two oscillators are synchronized, their frequen-
cies are identical. At the phase flip, this frequency also
changes abruptly. Their oscillation frequency � �measured
from the peak-to-peak separation �4�� is shown as a function
of � in Fig. 2�c� where the abrupt change at the phase-flip
bifurcation is evident. Trajectories before and after the bifur-
cation for the transitions along the arrows marked 2, 3, and 4

are shown in the inset of Figs. 2�d�–2�f�. When the transition
is from one limit cycle to another, �1 remains zero across the
transition, but �2 shows a discontinuity �Fig. 2�d��. In the
transition from a limit cycle to a chaotic attractor �Fig. 2�e��,
�1 and �4 are discontinuous, while �2=�3 remain equal to 0,
while when the transition is in the chaotic region �Fig. 2�f��
both �1 and �2 are positive, and �4, which is negative, has a
maximum at the phase flip. In all cases there is a discontinu-
ity in the largest negative Lyapunov exponent or its deriva-
tive across this bifurcation: this property can be used to con-
struct an order parameter for the bifurcation.

FIG. 1. �Color online� �a� Schematic phase diagram �4� for iden-
tical coupled Rössler oscillators, Eq. �1�, in the �-� plane. The thick
solid line indicates the locus of the phase-flip bifurcation and the
numbered arrows �see the text for details� indicate transitions be-
tween different types of motion. �b� Plots of phase difference �� in
the �-� plane; contour is drawn for ��=� /2.

FIG. 2. �Color online� �a� Spectrum of Lyapunov exponents for
the Rössler system Eq. �1� as a function of the time delay � at fixed
coupling strength �=0.16. In amplitude death, all Lyapunov expo-
nents are negative. �b� The phase difference between the oscillators:
this is 0 before and � after the transition at �c	1.58. �c� The fre-
quency of the synchronized oscillators as a function of �. The larg-
est few Lyapunov exponents �d� as a function of � for �=0.105, �e�
as a function of � for �=2, and �f� as a function of � for �=0.01. In
all cases, trajectories before and after the transition are shown in the
insets on the left and right of the panels, respectively.
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In order to gain insight into the nature of the mechanism
for this bifurcation, we analyze the somewhat simpler system
of identical delay-coupled limit cycle oscillators. This model
has been the subject of several earlier studies �6�, and is
given by the equation

Żj�t� = �1 + i� − �Zj�t��2�Zj�t� + ��Zk�t − �� − Zj�t�� , �2�

where j ,k=1,2 and k� j. The variables Zj�t� are the com-
plex amplitudes of the oscillators of frequency �, and � is the
coupling strength.

Numerical results are presented in Fig. 3 for �=9. The
spectrum of Lyapunov exponents along with �FP the expo-
nent for the fixed point �Zj =0� is shown in Fig. 3�a�. As in
the case of the Rössler system, the two oscillators are in
phase in the amplitude death region when �=0.15 and are out
of phase when �=0.19. The phase for each oscillator is

� j =tan−1�Im�Zj� /Re�Zj��, and the frequency � �which
differs from �� now depends on both � and �. At �=�c the
phase of one oscillator abruptly flips: the phase difference
��= ��1−�2� shown in Fig. 4�a� goes from 0 to � and si-
multaneously as for the chaotic oscillators, the frequency �
abruptly increases �Fig. 4�b��. This type of jump in phase has
also been observed in phase oscillators �7� when there are
multiple coexisting attractors. In the amplitude death region,
however, there is a single stable attractor, and hence the
phase jump phenomenon is a bifurcation, independent of ini-
tial conditions �15�. The phase flip also occurs in a region of
a purely limit cycle behavior: the dynamics before and after
are both periodic �Fig. 3�b��. This occurs for higher coupling
��=40�; here �1 remains zero across the transition while �2 is
discontinuous �16�.

We now obtain an analytic estimate for the phase-flip bi-
furcation for the system �2�. Consider the characteristic ei-
genvalue equation �6�

�2 − 2�a + i��� + �a2 − �2 + i2a�� − �2e−2�� = 0, �3�

where a=1−�. Setting �=	+i
 in Eq. �3� and separating
real and imaginary parts leads to the pair of equations

	2 − 
2 − 2�1 + a2 − �2 − �2e−2	� cos�2
�� = 0, �4a�

2	
 − 2�2 + 2a� + �2e−2	� sin�2
�� = 0, �4b�

where �1= �a	−
�� and �2= �	�+a
�.
The real part of the eigenvalue is the Lyapunov exponent

at the fixed point, 	=�FP, and by using this in Eqs. �4�, 

can be determined. The roots for the two equations, are
shown separately in Fig. 4�b� and these can be seen to coin-
cide with the oscillator frequency, �, prior to �c along the
lower branch, and above �c along the upper branch.

Around the fixed point, Eq. �2� can be written in polar
coordinates Zj�t�=Aj�t�exp i� j�t�
exp�	+ i
t�. Separating
real and imaginary parts, we get

	 = a − e2	t + �e	� cos�� j�t − �� − �k�t�� , �5�

FIG. 3. �Color online� The largest two Lyapunov exponents for
the coupled oscillators Eq. �2� as a function of the time delay with
fixed coupling. �a� �=9. When all Lyapunov exponents are nega-
tive, there is oscillator death �see the inset trajectories, in phase for
�=0.15 and out of phase for �=0.19�. �b� �=40, when the transition
is from limit cycle to limit cycle.

FIG. 4. �Color online� �a� The
phase difference between oscilla-
tors with time delay � which is
equal to 0 before and � after the
transition. �b� Solution of Eqs.
�4a� �circles� and �4b� �stars� as a
function of the delay parameter �.
The dashed line is the oscillator
frequency, � which is estimated
from the period. The functions �c�
f1 and �d� f2 in the �-�� plane.
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 = � + � exp�	��sin�� j�t − �� − �k�t�� , �6�

where the subscripts take the values j ,k=1,2 and j�k to
give two pairs of identities.

The phase difference in the phase- and frequency-locked
state is constant; namely, if �1�t�=
t, then �2�t�=
t+��
where �� is the phase difference. Substituting this in Eqs.
�5� and �6� and rearranging, we get a set of conditions

f1���,�� 
 cos��� − 
�� − cos��� + 
�� = 0 �7�

and

f2���,�� 
 sin��� − 
�� + sin��� + 
�� = 0. �8�

From these equations, it is clear that �� can be either 0 or
�: the motion is either in phase or out of phase. The func-
tions f1 and f2 are shown in Figs. 4�c� and 4�d� in the ��
-� plane. Since there is no discontinuity in f1 along the �
axis, both solutions, namely, 0 and �, are allowed. In f2 there
is a discontinuity at �c and therefore before and after the
bifurcation the solutions of Eqs. �7� and �8� must be distinct:
if ��=0 is a solution for ���c then ��=� is the solution
for �
�c.

This analysis can be extended to the case of phase flip
when the dynamics is on limit cycle attractors, namely, when
the fixed point is unstable �see Fig. 3�b��. A similar estimate
of the frequency 
 agrees with the numerically computed �,
so that in this case also the eigenvalues of the fixed point
determine the characteristics of the bifurcation �15�. Such
analysis is not immediately possible for chaotic oscillators.

In summary, we have described a distinctive bifurcation
that is characteristic of delay-coupled nonlinear systems �17�
in the synchronized state: the two subsystems go from being
in phase to being out of phase. The phase-flip bifurcation,
which can occur in different dynamical regimes, always ap-
pears to be accompanied by a jump in the frequency of the
synchronized oscillators. This bifurcation also occurs when

the coupled oscillators are nonidentical, namely, when the
parameters are mismatched, as well as when the oscillators
are distinct. In this last case the phase difference is only
approximately zero or � �4�.

We have verified that this bifurcation can be observed in
experiment. In amplitude death, since this happens at the
point of maximum stability when the Lyapunov exponent
goes through a local minimum, the change in dynamics is
robust to noise and perturbation. A study of Chua circuits
with time-delay coupling has clearly demonstrated the phase
flip �15�.

The ubiquity of this bifurcation in time-delay-coupled
systems is suggestive of its importance, applicability, and
utility in a large range of physical situations �18,19�. In
coupled laser systems where the time delay can be conve-
niently varied in experiments, the in-phase regime is one of
low frequency, while the high-frequency out-of-phase regime
can permit a relatively higher degree of constant output �20�.
Ecosystems where the coupling between separated commu-
nities naturally involves time delays are another area of ap-
plication. For instance, it has been observed that synchroni-
zation occurs in epidemics: measles infections in different
neighboring cities in the United Kingdom are known to be
either in phase �Birmingham and Newcastle� or out of phase
�Cambridge and Norwich� �see Fig. 1 of Ref. �8��. In this
context, analysis of the phase-flip bifurcation in ensembles of
oscillators will be of interest, as also the manifestations of
this phenomenon in oscillators on networks of complex to-
pology. Studies in these directions are currently under way
�15�.
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